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Abstract—The title marine eicosanoids were prepared using a novel, stereoselective bis-annulation to create the characteristic
cyclopropane-�-lactone motif. © 2002 Elsevier Science Ltd. All rights reserved.

Constanolactones A (1) and B (2) were isolated1 by
Nagle and Gerwick in 1990 from the temperate red alga
Constantinea simplex where together they accounted for
3–4% of the organic extractable lipids.2 In common
with a few other marine fatty acid metabolites,3–5 1 and
2 incorporate a characteristic cyclopropane–lactone
motif as well as intriguing biological activities that have
provoked considerable synthetic interest.6–8 To expedite
current pharmaceutical evaluations of this family, we
describe herein a convergent, asymmetric total synthesis
of 1 and 2. The key transformations in our strategy
exploit (i) introduction of a one-carbon unit by dehy-
drative alkylation;9 (ii) a stereospecific, one-pot bis-
annulation to create the cyclopropane-�-lactone
substructure;10 and (iii) a �-oxido ylide homologation.11

The synthesis commenced with the addition of the
lithium salt of 6-(tert-butyldiphenylsilyloxy)hexyne12

(11) to the readily available chiral aldehyde13 3, provid-
ing a chromatographically separable mixture (45:55) of
alcohols 4 and 6 (Scheme 1).14,15 The undesired isomer,
4, was inverted to 6 via Mitsunobu adduct 5 and
saponification. Dehydrative alkylation9 of 6 with
bis(phenylsulphonyl)methane proceeded with inversion
of configuration and served to introduce the C(7)-cyclo-
propyl methylene.16 To set the stage for the bis-annula-
tion, the bis-sulphonyl adduct was uneventfully
converted to carboxylic acid 7 by sequential chromi-
um(II) reduction of the acetylene,17 fluoride mediated
desilylation, and PDC oxidation. Exposure of 7 to
iodine and NaH in refluxing THF smoothly generated
cyclopropyl-�-lactone 8 as the sole product.18

Following desulphonylation of 8 using magnesium9 in
aqueous THF, the resultant seco-acid was utilized to
adjust the C(5)-stereochemistry via intramolecular Mit-
sunobu inversion. Acetonide hydrolysis then led to
diol-9. Primary selective tosylation of 9 and displace-
ment with Ph3P furnished the corresponding �-hydroxy
phosphonium salt which was converted to its �-oxido
ylide using 2 equiv. of base at low temperature.11

Subsequent condensation with 2(S)-(4-methoxybenzyl-
oxy)-4(Z)-decenal19 (12) afforded 10 embodying the
complete carbon framework of the constanolactones.
Mild MPM cleavage of 10 using Cr(II)/LiI20 evolved
constanolactone B (2). Alternatively, 10 gave rise to
constanolactone A (1) via sequential Mitsunobu inver-
sion of the C(9)-alcohol, saponification with subsequent
re-lactonization upon acidification, and Cr(II)/LiI de-
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Scheme 1. Reagents and conditions : (a) acetylene 11, n-BuLi, THF, −78°C, 1 h; add 3, −78°C, 3 h, then rt, 2 h. (b) PhCO2H,
PPh3/DEAD, C6H6, 23°C, 12 h. (c) NaOH, MeOH, 23°C, 12 h. (d) (PhO2S)2CH2, PPh3/DEAD, C6H6, 23°C, 3 h. (e) CrSO4,
DMF/H2O, 23°C, 2 h. (f) n-Bu4NF, THF, 23°C, 18 h. (g) PDC, DMF, 23°C, 40 h. (h) NaH, I2, THF, 68°C, 44 h. (i) Mg, cat.
HgCl2, THF/H2O (2:1), 23°C, 12 h. (j) PPh3/DEAD, C6H6, 23°C, 7 h. (k) CF3CO2H, THF/H2O (4:1), 40°C, 10 h. (l) TsCl, py,
4°C, 36 h. (m) Ph3P, CH3CN, 80°C, 40 h. (n) Wittig salt, sec-BuLi (2 equiv.), THF, −78°C, 1.5 h; add 12, −78 to −20°C, 2 h. (o)
CrCl2/LiI, moist EtOAc, 45°C, 2 h. (p) 4-(O2N)C6H4CO2H, PPh3/DEAD, C6H6, 23°C, 10 h. (q) NaOH, THF/H2O, 23°C, 15 h;
PhH, 4 A� mol. sieves, 80°C, 5 h.

protection. The spectral and physical data for 1 and 2
were identical with published values.
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